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ABSTRACT

Weiner, J. and Conte, P.T., 1981. Dispersal and neighborhood effects in an annual plant
competition model. Ecol. Modelling, 13: 131--147.

A spatial simulation model of annual plant interference which employs dispersal and
neighborhood effects is developed and implemented with a computer program. The following
hypotheses are observed to be consistent with the behavior of the model:

(1) Dispersal rates are extremely important in determining the rate at which a species can
colonize or eliminate an inferior competitor from an area.

(2) Dispersal rates and local competition result in spatial patterns in plant populations
which retard or prevent competitive elimination under conditions where it would be expected
from non-spatial models. If interspecific competition is more intense than intraspecific
competition, a mosaic of patches each dominated by one species will develop, but these
patches may be in equilibrium.

The inclusion of space in a plant competition model, even in a crude way, results in
behavior which is significantly different from that of non-spatial models.

INTRODUCTION

Darwin, perhaps the greatest ecologist, had a continuous preoccupation
with numbers of organisms (Harper, 1967). Ecology has since focused on the
factors determining the abundance and distributions of organisms. Types of
interaction referred to as ‘competition’ have been considered by many
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ecologists to be the most significant biotic factors affecting organisms’
distribution, population size and structure, and evolution (Krebs, 1977).
Competition has been the subject of much experimental and theoretical
investigation during this century. Hypotheses concerning the ability of
competing species to coexisi in space and time have occupied a central place
in these investigations.

Models can be useful in exploring hypotheses. Although models cannot
test hypotheses in the same sense that empirical studies do, they can be
employed as logical tests. As such, models demonstrate the logical correlates
and implications of a hypothesis and are capable of disproving hypotheses.
Modeling studies are often a good first step in developing and testing a
hypothesis, answering the question “Is this possible and reasonable?”.

Attempts to model competition in animal populations have been much
more successful than similar attempts with plants (Harper, 1967; Schaffer
and Leigh, 1976; Solbrig, 1976). There are two fundamental reasons for this.
Because of the high degree of plasticity of plants (Bradshaw, 1967) and
vegetative reproduction, number of individuals is not as good a measure of
plant populations as it is of animal populations. Also, the immobility of
plants, except in the seed stage, makes it impossible, in the view of many
workers, to describe plant populations adequately without including their
spatial pattern in the description (Mack and Harper, 1977). Experimentally,
over a wide range of density conditions, growth and reproduction vary
greatly as the spatial pattern is varied (Sakai, 1957; Harper, 1961, 1965).
Density is not very useful in predicting the behavior of plant populations
under experimental conditions unless the spatial pattern of the plants is a
controlled variable. Whereas theoretical animal competition models have
described the population in terms of density over time and the effect of
density in changing the growth rate of the population, a plant competition
model might do better to analyze the effect that neighbors have on the
reproduction of individuals. But, if a model of this process is to be useful, it
will have to incorporate many generations.

A computer-based simulation model which views annual plant popula-
tions as aggregated neighborhoods has been developed. Seed production of
each species within an aggregate is a function of the number and species of
each individual’s neighbors. These seeds are then distributed in two-
dimensional space. The seeds then compete with each other for survival in a
similar fashion. The two-dimensional environment is homogeneous except
for heterogeneity in the spatial pattern of the populations, which is both a
cause and an effect of dispersal and the interaction of individuals.

The objective here is to explore the following hypotheses, which may be
helpful in explaining plant diversity in nature:



(1) Dispersal rates will have a marked effect on the rate with which a
species can colonize an area or ¢liminate an inferior competitor from an
area.

(2) Dispersal rates and local competition may generate spatial patterns in
plants which can retard or prevent competitive elimination under conditions
where it would be expected from non-spatial models. This may occur
because localized competition and dispersal prevent a species with an overall
advantage in numbers from increasing its numbers through time, because
groups may acquire territories from which they resist displacement (Levin.
1974), or because the heterogeneous dispersion of individuals increases the
effect of intraspecific encounters. Spatial patterning arising from dispersal
and competition acts as a buffer against competitive elimination. The
specific hypothesis here is that, contrary to the behavior of non-spatial
models, stable coexistence of two competing species can occur when inter-
specific competition is more intense than intraspecific competition, if the
competition is local and seed dispersal is biased towards its source. Species
may acquire territories from which the other species are excluded, but these
sets of patches can be in equilibrium.

THE MODEL
Assumptions

The model incorporates:

(1) A three-stage life cycle:
(a) adults (seeds surviving to adulthood);
(b) seeds to be dispersed from adults;
(c) seeds dispersed in space.
(2) Local neighborhood competition which affects the performance of
individuals.

Mortality occurs between stages ¢ and a, and plasticity and /or mortality
occurs between stages a and b. Reasonable assumptions or guesses are made
about the quantitative expression of these factors from what is known of
these phenomena. The model is designed to be as general as possible so that
it can be easily adapted as more becomes known about the quantification of
competition and dispersal.

Such a model, which is an attempt to focus on certain aspects of nature,
must of necessity make simplifying assumptions which should be made
explicit. The assumptions of this model are:

(1) The environment is spatially and temporally homogeneous except for
heterogeneity due to the populations themselves. Only competition, random
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variation, and an individual’s potential determine what it will do. Competi-
tion alone is being considered. This is a simplification, but one which is
often necessary for the study of competition and one which may hold true in
certain situations.

(2) These theoretical populations are composed solely of annuals which
grow, produce seeds, and die in one season (generation). Harper (1965) has
pointed out that this makes annuals very suitable for the study of plant
competition. It also makes them very suitable for modeling.

(3) The annual’s growth is in synchrony. Seeds compete with seeds and
adults compete with adults.

(4) The effect of an individual on another can be quantified.

(5) The effect of neighbors is negative, i.e. competitive, and the more
neighbors an individual has, the more severe the effect of competition. But,
as the number of neighbors increases, the effect of the addition of another
individual decreases. The probability of survival and the extent of reproduc-
tion approach 0 asymptotically as the number of neighbors increases. Hence,
as the population density goes up, the total seed output of an area rises but
eventually levels off. This is a well-known plant density response (Harper,
1961).

(6) The nearer a neighbor is, the greater its effect.

(7) There is genetic uniformity or random variation of genotypes around a
mean. Thus, evolution is not occurring at a rate fast enough to change the
characteristics of each species within the periods modeled. All significant
genotypic variation is interspecific. This is a risky assumption (Antonovics,
1976) but one which is necessary in the modeling of many ecological
phenomena.

(8) Seed dispersal behavior is a property of each species and the pattern is
not skewed. In actuality seed dispersal usually occurs in a somewhat asym-
metric fashion, but there is no reason to believe that this would significantly
affect the model. The degree of kurtosis of each species’ dispersal pattern is
under the modeler’s control.

(9) There is no seed dormancy. Each seed attempts germination in the
following season.

(10) The field exists isolated in space with seeds leaving the field, no seeds
entering and a standard edge effect for adult competition.

Model description

Attempts have been made to assess the effect of competition on individu-
als in terms of their neighbors (Mack and Harper, 1977; Weiner, 1978,
1981). The concept of a neighborhood has emerged as a convenient way of
aggregating distances to neighbors. Thus, instead of a distance to each
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neighbor, one has an average distance to all neighbors within each neighbor-
hood. In addition to number and distance of neighbors, factors which might
be used in describing the neighbor conditions experienced by an individual
include their species, size, and angular dispersion. The job of the plant
population modeler, using this approach, is to decide which of these factors
are most important and useful and to find a mathematical expression which
quantifies the relationship between these factors and the individual’s growth
or reproductive output. If one is studying annuals, the reproductive output is
simply the seed production

R=1{(R_ W)

where R is the seed production, R, is the production in the absence of
competition, and W is the total effect of competition. Considering simulta-
neously growing annuals, and the number and species of neighbors within
concentric neighborhoods of fixed size around an individual, the following
equation is advanced (Weiner, 1978):

max?

» s
R:Rmax/1 + 2 Di 2 ijvik
=1 k=1

where R is the reproductive output of an individual (number or weight of
seeds produced); R, is the reproductive output under the same abiotic
conditions in the absence of neighbors; D, is the effect of the /™ neighbor-
hood; C, is the effect of the k™ species; N, is the number of individuals of
species k in neighborhood i; p is the number of neighborhoods; and s is the
number of species.

The different effects of species on each other and on themselves are
expressed with competition coefficients, parallel to those of Lotka’s (1925)
and Volterra’s (1926) competition equations except that the effect of compe-
tition is to reduce the reproduction of an individual rather than to reduce the
growth rate of the population as a whole. In the simplest case, with one
neighborhood and one species of neighbor this is essentially the reciprocal-
yield relationship which has been most successfully used in predicting yield
from density in monoculture (Kira et al., 1953; Holliday, 1960).

In the model, plants compete with plants in the above fashion and
produce seeds which are dispersed through space from their point of origin.
In the situation of simultaneously growing annuals, these seeds compete with
their neighboring seeds similarly. Some seeds survive to adulthood and the
process begins again. A version of the model with some degree of spatial
aggregation can be implemented by a computer program. Aggregation is
necessary to make the simulation tractable, for if neighborhoods were to be
constructed and searched and seed dispersal patterns generated for each
individual, modeling a population of any size would require computational
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facilities usually reserved for air defence systems, not ecological modeling.
By aggregating the model for logistic reasons, the notion of a truly individual
view of interference and dispersal is compromised. Individuals are replaced
by spatial aggregates of individuals each of which, if totally isolated, is
similar to a non-spatial model. These aggregates are connected in space by
dispersal and nearby adult interference effects. Hence, the spatially aggre-
gated model is intermediate to non-spatial and individually oriented spatial
models. As such, it is similar to other ecological models with spatial
heterogeneity (e.g. Levin, 1974) with the exception that space and life history
are viewed in a way which is more appropriate for plants.

In the computer simulation, two-dimensional space is divided into cells
which can be thought of as hexagons. Each cell is surrounded by six
equidistant cells. Cells represent aggregated locations; thus the cell itself is
the immediate neighborhood of each plant or seed in that cell. The six
equidistant cells comprise the next neighborhood. Thus, all individuals
within a cell are considered to be the same distance from one another. In
considering competition from nearby cells and dispersal, each individual is
considered to be located in the center of the cell it occupies. The parameters’
values determine how many individuals can occupy a cell. When cell
populations are low (fewer than five adults per cell) the model’s cells most
closely approximate individual-centered neighborhoods.

Seeds compete with seeds only within their immediate neighborhood (1.e.
cell) and the probability of an individual of species j surviving to adulthood
R, is a function of two values:

(1) W, is the total effect of the number and species of its competitors
Y =k§1 CiNe = € (1)

where W, is the total effect of competition; C,, is the effect of a seed of
species £ on a seed of species j; N, is the number of seeds of species k in the
cell; and s is the number of species present. The C,; term is subtracted so
that the plant will not be competing with itself.
(2) K| is the probability of a seed of species j surviving in the absence of
any competition. The relationship is hyperbolic
K.

— J
R; = 1+ W, (2)

Within a cell, the expected number of seeds of species j [ N(seeds),] that
survive to the adult stage [ N(adults),] is simply the probability that a single
seed of species j will survive multiplied by the population of seeds of species
J in that cell

N(seeds); X R; = N(adults)
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The number of seeds which survive to adulthood in a cell can be treated as
a mean value, around which there is random normal variation.

Adults compete in a similar fashion except that competition from cells
around the individual’s cell can also be considered. The equation for the
total effect of competition by adults is

p s
W, = _21 D’@% Cy Ny — DG,

where W), C,,, N, and s are adult equivalents to the same values in eq. 1, D,
is the effect of neighborhood i and p is the number of neighborhoods. The
more distant a neighborhood, the smaller the effect of an individual within
it. The number of neighborhoods considered and their relative effects are
correlates of the degree of localization of adult interference effects, and are
under the modeler’s control. In implementing the simulations, neighbor-
hoods have been limited to the immediate cell and its ring of six contiguous
cells.

The number of seeds produced by an adult is determined in the same
fashion as the probability of a seed’s surviving (eq. 2), with R; = the number
of seeds produced by an adult and K, = the maximum seed production of an
individual of species j. Total production of seeds of species j is equal to the
number of seeds produced by an individual of species j in that cell times the
population of species j in the cell

N(adults), X R, = N(seeds produced)

Seeds of each species produced within a cell are dispersed through the
two-dimensional space into the neighborhoods and beyond in proportions
that are a characteristic of and therefore constant for each species. Dispersal
is determined on the basis of what fraction of seeds falls into the immediate
cell, into the first ring of cells, and beyond. The number of seeds entering a
cell from another cell can also be treated as a mean value around which there
is random normal variation. Seeds dispersed beyond the two neighborhoods
occur in higher frequency toward the cell of origin. These seeds land in cells
and the cycle starts for the next generation. The model is summarized in
Fig. 1.

This spatial model differs most significantly from non-spatial models such
as the Lotka— Volterra equations in that:

(1) Competition is local and viewed from the individual level. The effect
of neighbors is to reduce an individual’s probability of survival and repro-
ductive output. Effects on the population occur through this mechanism.

(2) Dispersal is included.

(3) Several elements can be treated stochastically rather than deterministi-
cally. The number of seeds of each species entering a cell from each source
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Function of: Adults Function of:
() Max. survival rate (1) Max. seed production
of each species of each species
(@)) Competition: (2) Competition:
a. seed competition _ a.  neighborhood
coefficients coefficients
b. number of seeds b.  adult competition
of each species coefficients
within cell ¢.  number of plants
3) Random variation of each species
within each
neighborhood
Step 3 Step 1
Seeds dispersed « —Step 2« Seeds produced

Function of:

(1) Seed dispersal
proportions for
each species

(2) Random variation

Fig. 1. Summary of simulation model.

and the number of seeds of each species which survive within each cell are
treated as mean values, around which there is random normal variation.
A computer program was written in ALGOL to implement the model.

RESULTS AND DISCUSSION
Effect of dispersal rates on population growth and competitive elimination

Dispersal and one species population growth

The first hypothesis is that the dispersal rate affects the rate of population
growth from a few individuals to the carrying capacity of an area. This
hypothesis, which has been made implicitly by several workers (e.g. Gadgil,
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1971; Harper, 1977), is that the more dispersal is localized, the slower the
growth rate of the population will be. In our model, maximum number of
adults which can survive within a cell in monoculture can be calculated as a
limit

K. K

— J _ J
Ri=MTew—n " 1/Nsc-cn BN R =k/C

Starting with one individual and without changing other parameters, three
dispersal rates were simulated. In the first run [Example 1, run a (Fig. 2)],
65% of the seeds produced by an individual fall into the first neighborhood
(immediate cell), 35% into the second neighborhood, and none are dispersed
beyond the second neighborhood. Run b is different in that the percentage
of seeds distributed to the second neighborhood is decreased by 5% and this
number is dispersed ‘long distance’, i.e. beyond the second neighborhood. In
run ¢, 60% of the propagules enter the first neighborhood, 30% enter the
second, and 10% go farther.

The results demonstrate that with increased values for long distance
dispersal the population growth rate is increased (Fig.2). Without long-
distance dispersal population growth occurs within a cell and contiguous
cells as propagules are dispersed. The presence of long-distance dispersal in
run b provides for the dispersal of ten seeds from the original parent to cells
beyond the first two neighborhoods. Of these, one survives to adulthood and
this represents a new center for population growth. When the number of
propagules dispersed beyond the neighborhoods is increased to 10%, two
distant seeds survive. The ability to get propagules to uncolonized areas is
limiting population growth in runs a and b.

600
500
400
300
200

100

Fig. 2. (Example 1) Population growth from one: individual in a large field demonstrating
effects of long range dispersal. Population size as a function of time.
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Thus, the presence or absence of long-distance dispersal is extremely
important in determining the population growth rate. Without long-distance
dispersal, even if relatively rare, equilibrium is postponed. The overall
population growth behavior (Fig. 2) conforms to logistic growth (Pearl and
Reed, 1920) but the steepness of the sigmoid curve is determined by
dispersal rates as well as fecundity.

Competitive advantage and dispersal

Similar results are observed with respect to the role of dispersal on the
rate with which a superior competitor eliminated an inferior one. When
long-distance dispersal does not occur, the length of time required for
elimination 1s greatly increased. In one series of runs, when 20% of the seeds
of both species were dispersed beyond the second neighborhood, the time
required for competitive elimination was reduced by 80% over identical runs
without long-range dispersal.

While dispersal rates do not seem to affect the ability of one species to
eliminate the other when there is a clear competitive advantage, the rate of
elimination is affected. Changes in the fraction of seeds distributed to
surrounding cells and beyond change the number of generations required for
elimination.

If all offspring were so highly dispersed as to be random in space the
model’s behavior would essentially be that of one big cell, all individuals
having an equal probability of interacting with one another. Random disper-
sal has been shown to have a homogenizing effect on population heterogene-
ity (Levin, 1976). Heterogeneity originating from restricted dispersal and
local competition changes this, such that competitive elimination is retarded.
Competitive elimination may be a very slow process. Until recently, theoreti-
cians have been concerned primarily with the maintenance of diversity under
equilibrium conditions. An emphasis on disequilibrium is developing among
researchers (e.g. Connell, 1978; Huston, 1979). If competitive elimination is
a very slow process, higher diversity than would occur under equilibrium
conditions may be the rule. Forces which tend to retard elimination, i.e.
lengthen the time required to reach equilibrium, should increase diversity
(Huston, 1979) and may be as mmportant as those forces which act at
equilibrium, since this state may rarely be achieved. Dispersal in plant
populations may have an important role in retarding competitive elimination
and, thus, increasing diversity.

Interspecific and intraspecific competition

According to the now classical competition models of Lotka (1925) and
Volterra (1926), if intraspecific competition is greater than interspecific



Fig. 3. Example 2a: (a) fifth generation adults after starting with five randomly placed
individuals of each species. Intraspecific competition is more intense than interspecific
competition within each cell, the number of individuals of species 1 1s above the number of
individuals of species 2; (b) sixth generation seeds.

competition, equilibrium coexistence of the two species should occur, but if
interspecific competition is more intense an unstable equilibrium is the
outcome, resulting in elimination of one of the two species. Cases of both
types, greater interspecific competition and greater intraspecific competition,
have been documented in plant competition experiments (Harper, 1977).

The effect of relative intra- and interspecific competition values on the
spatial patterning of populations is illustrated in Example 2. When intraspe-
cific competition is more intense (Example 2a) plants will tend to produce
more seeds and seeds will be more likely to survive when in the presence of
other species than when amongst their own type. Thus, five generations after
starting with five randomly-placed adults of each species, cohabitation of
almost every cell in the field has occurred (Fig. 3a). Seeds produced by and
distributed from these adults are also well mixed interspecifically (Fig. 3b).
Occupation of every cell in the field by adults of both species occurred in the
next generation and equilibrium coexistence occurs as in the Lotka— Volterra
models (Fig. 4).

=

1 1 ]
8 10

Fig. 4. Example 2a. Intraspecific competition’ is greater than interspecific competition.
Population size as a function of time.
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Fig. 5. Example 2b: (a) fifth generation adults. Interspecific competition is more intense than
intraspecific competition. (Initial conditions are the same as in Example 2a.); (b) sixth-
generation seeds.

When interspecific competition is more intense (Example 2b) groups tend
to occupy somewhat exclusive territories which may overlap (Fig. 5a). In
such a case seeds produced and distributed from individuals of different
species are found cohabiting cells in general, but they occur in highly biased
mixtures reflecting the territories occupied by their parents (Fig. 5b). The
degree of cell cohabitation by adults of both species for Examples 2a and 2b
is illustrated in Fig. 6. In the latter case there is a tendency for total
population sizes to diverge, resulting in elimination of one of the species
(Fig. 7). This is the unstable equilibrium behavior predicted from the Lotka-
Volterra equations and with which the hypothesis is concerned.
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Fig. 6. Examples 2a and 2b. Number of cells containing adults of both species as a function
of time.
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Fig. 7. Example 2b. Interspecific competition is greater than intraspecific competition.
Population size as a function of time.

In the spatial model, it is observed that this instability occurs only when
there is a high degree of mixing through dispersal. Seed dispersal proportions
in Example 2b which result in instability are 60% to the first neighborhood.
30% to the second and 10% beyond for both species. When there is no long
distance component of seed dispersal, such as in Example 2c¢ where the
dispersal proportions are 60% to the first neighborhood, 40% to the second,
and none beyond, elimination does not occur (Fig. 8).

Further investigation of this result was undertaken. In Example 3 elimina-
tion occurs when interspecific seed competition values are higher than
intraspecific values and seeds are widely dispersed (Fig. 9). A change in the
initial advantage (Example 3b) results in elimination of the other species

180
150
120
80
€0

30

5 10 15 20 ; 25 30 35 40

Fig. 8. Example 2c. Interspecific competition is greater than intraspecific competition and no
long distance dispersal. Population size as a function of time.
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Fig. 9 (left). Example 3, run a. Unstable equilibrium, interspecific competition is greater than

intraspecific, species 2 has initial advantage, seeds highly dispersed.

Fig. 10 (right). Example 3, run b. Parameters are the same as in run a except species 1 has
initial advantage.
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Fig. 11 (left). Example 3, run c. ‘Unstable equilibrium’, parameters are the same as in runb
except seeds not highly dispersed.

Fig. 12 (right). Example 4a. ‘Unstable equilibrium’ with long-range dispersal. Population size
as a function of time.
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Fig. 13. Example 4b. ‘Unstable equilibrium’ without long-range dispersal.

(Fig. 10), demonstrating that unstable equilibrium behavior is. in fact, what
is occurring. However, when long-distance dispersal is reduced (Example 3c¢).
no tendency towards elimination is observed (Fig. 11). A third case is
presented in Example 4. Here, both adults and seed interspecific competition
values are 50% higher than their intraspecific counterparts. Initialization is
with three randomly placed adults of species | and one of species 2. Again,
when long-distance dispersal is present (Example 4a) elimination occurs
(Fig. 12) but without it (Example 4b) the equilibrium is stabilized and
equilibrium coexistence occurs (Fig. 13). This result has been retested under
a wide variety of conditions including variations in 1nitial conditions, neigh-
borhood effects, and carrying capacities. When the competition values are
symmetrical and neither species is inherently superior, unstable equilibrium
behavior always depends upon significant long distance dispersal in this
model. This is because the model treats competition and, to a lesser extent.
dispersal as local phenomena.

If dispersal and the effect of neighbors were to occur over relatively large
distances without diminution, the model’s behavior would approach that of
one large cell, which is not unlike the behavior of non-spatial models. Under
such circumstances, if interspecific competition is greater than intraspecific
competition each group will suppress the other population more than it
suppresses its own population. If one group gains an advantage from initial
conditions or random events it will exert greater pressure on the other group
than the other group exerts on it because of its advantage in overall
numbers. In the spatial model this overall advantage is expressed through
dispersal, since competition occurs at a local level. If, however, dispersal is
also a local phenomenon, the overall population sizes may have no effect on
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what occurs locally. A minority species will be able to maintain its local
advantages. An overall advantage gained by one group through initial
conditions or random events may be maintained, but it does not increase
through time. Thus, whole populations do not have a significant effect on
what happens locally, and local subpopulations may be in equilibrium. This
leads to a patchwork of monocultures or highly-biased mixtures. The genesis
and maintenance of such mosaics in nature are often attributed to abiotic
heterogeneity, but the model’s behavior suggests that such spatial hetero-
geneity of the populations themselves can arise and be maintained through
local competition and dispersal when interspecific competition is more
intense than intraspecific competition.

Seed-bath effect

The importance of the dense seed shadow under a parent annual in the
model and in nature suggests either that this type of dispersal is selectively
advantageous in many circumstances or that it is unavoidable. An annual
plant that produces many seeds most of which fall nearby has a very good
chance that at least one of its offspring will replace it in the location in the
next generation. Janzen (1970), in discussing tropical trees, has suggested
that the disadvantage for a seedling in being near its parent is more
significant in determining the plants’ distribution than the seed-bath effect,
although he attributes this to predation rather than competition. Thus,
selection should maximize long-distance dispersal, presumably by wind or
animals. For annuals for which predation is not as intense as it is for tropical
trees the strategy of producing many small seeds, most of which fall nearby,
may be conservative in keeping the likelihood of an offspring replacing its
parent high, while maintaining some degree of high risk—high reward long-
distance dispersal. This is, in a sense, similar to producing two types of
propagule: one highly dispersed with a low probability of survival, and
another with low dispersal and a high probability of survival. The second
propagule strategy is mimicked by putting many low-probability propagules
in an already proven site which is likely to have fewer propagules of other
individuals. This may help explain why seed dispersal polymorphisms are
relatively rare. Another implication is that if the parent’s site is a better risk
than other places, optimally dispersed seeds will not be maximally dispersed.

ACKNOWLEDGEMENTS

The authors thank S.A. Cook, P. Frank and J.D. Udovic for helpful
comments and criticisms. This research was supported, in part, by PHS-NIH
Training Grant 5T32 GM 0 7257.



REFERENCES

Antonovics, J., 1976. The new ecological genetics. Syst. Bot., 1: 233-245.

Bradshaw, A.D., 1967. Evolutionary significance of phenotypic plasticity in plants. Adv.
Genet., 13: 115-155.

Connell, J.H., 1978. Diversity in tropical rain forests and coral reefs. Science, 199: 1302~ 1310.

Gadgil, 1971. Dispersal: population consequences and evolution. Ecology, 52: 253-261.

Harper, J.L., 1961. Approaches to the study of plant competition. In: Mechanisms in
Biological Competition. Proc. 11th Symp. Soc. Exp. Biol. Academic Press. New York,
NY., pp. 1-39.

Harper, J.L., 1965. The nature and consequences of interference amongst plants. In: Genetics
Today. Proc. 11th Intern. Cong. Gen., Vol. 2, The Hague, The Netherlands, pp. 465-482.

Harper, J.L., 1967. A Darwinian approach to plant ecology. J. Ecol., 55: 247-270.

Harper, J.L., 1977. Population Biology of Plants. Academic Press, London.

Holliday, R., 1960. Plant population and crop yield. Nature (London), 186: 22--24.

Huston, M., 1979. A general hypothesis of species diversity. Am. Nat., 113: 81-101.

Janzen, D.H., 1970. Herbivores and the number of tree species in tropical rain forests. Am.
Nat., 104: 501-528.

Kira, T., Ogawa, H. and Sakazaki, N., 1953. Intraspecific competition among higher plants. 1.
Competition—density-yield interrelationship in regularly dispersed populations. J. Inst.
Polytech. Osaka Univ,, Ser. D., 4: 2-15.

Krebs, CJ., 1977. Ecology: The Experimental Analysis of Distribution and Abundance.
Harper and Row, New York, NY.

Levin, S.A., 1974. Dispersion and population interactions. Am. Nat., 108: 207-228.

Levin, S.A., 1976. Population dynamic models in heterogeneous environments. Annu. Rev.
Ecol. Syst., 7: 287-310.

Lotka, A.J., 1925. Elements of Physical Biology. Reprinted in 1956 by Dover, New York, NY.

Mack, R.N. and Harper, J.L., 1977. Interference in dune annuals: spatial pattern and
neighborhood effects. J. Ecol., 65: 345-363.

Pearl, R. and Reed, L.J,, 1920. On the growth rate of the population of the United States
since 1790 and its mathematical representation. Proc. Nat. Acad. Sc1. U.S.A., 6: 275-288.

Sakai, K., 1957. Studies on competition in plants. VII. Effect on competition of a varving
number of competing and non-competing individuals. J. Genet., 55: 227-234.

Schaffer, W.M. and Leigh, E.G., 1976. The prospective role of mathematical theory in plant
ecology. Syst. Bot., 1: 209-233.

Solbrig, O.T., 1976. Plant population biology: an overview. Syst. Bot., 1: 202-208.

Volterra, V., 1926. Fluctuations in the abundance of a species considered mathematically.
Nature (London), 118: 558-560.

Weiner, J., 1978. Studies on interference in annual plants. Ph.D. Thesis, Univ. Oregon,
Eugene, OR.

Weiner, J., 1981. A neighborhood model of annual plant interference (submitted for publica-
tion).



