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BOOTSTRAPPING THE GINI
COEFFICIENT OF INEQUALITY"

Philip M. Dixon,? Jacob Weiner,?
Thomas Mitchell-Olds,* and Robert Woodley®

Despite current interest in the causes and conse-
quences of plant size hierarchies, there are different
opinions about the best way to evaluate a size distri-
bution. Weiner and Solbrig (1984) have argued that
size hierarchy means size incquality, and that the Gini
coefficient of inequality (Sen 1973) is more relevant
than skewness or variance of plant size (e.g., Turner
and Rabinowitz 1983) for most ecological questions.
Weiner (1985) presents a formula to estimate the pop-
ulation Gini coefficient (G) from a sample and states
that reasonable confidence intervals for the population
Gini coefficient can be obtained by a bootstrapping
procedure (Efron 1982). This note evaluates the ac-
curacy of these bootstrap confidence intervals. We find
that they are reasonably accurate when calculated from
samples of 50 or more individuals, but that they are
too narrow when calculated from smaller samples.

The bootstrap procedure uses the observed data to
estimate the theoretical and usually unknown distri-
bution from which the data came (Efron 1982, Meyer
et al. 1986). Bootstrap samples of the same size as the
original sample are repeatedly drawn by sampling with
replacement from the observed data. The test statistic,
e.g.. the Gini coeflicient, is calculated for each boot-
strap sample. The distribution of G’s obtained from
bootstrap sampling can be used to estimate the stan-
dard deviation and set confidence limits on the ob-
served statistic (Efron 1982). The bootstrap procedure
does not require any knowledge of the distribution of
the statistic in question, may have certain optimal
properties (Efron 1981, but see Schenker 1985, Wu
1986), and can be used when the standard deviation
or confidence intervals for the statistic are unknown
or difficult to calculate analytically.

The accuracy of any method for computing confi-
dence intervals can be evaluated by generating data
from a known distribution with a known parameter.
If many samples of data from the known distribution
are generated and a confidence interval calculated from
each, the number of confidence intervals that include
the parameter can be determined. An accurate confi-
dence interval includes the known parameter the stated
percentage of the time; for example, a 95% confidence
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interval should include the true value in 95% of the
random samples of data. Although in some situations
bootstrap confidence intervals are relatively accurate
(Efron 1982:79), in other situations they are too narrow
(Schenker 1985, Meyer et al. 1986).

Methods

The accuracy of the bootstrap procedure can be eval-
uated by repeatedly generating random samples from
a distribution with a known Gini coefficient. From each
sample, the bootstrap procedure is used to calculate a
confidence interval. Then, one can ask the question:
how many of those confidence intervals include the
known G for the population. The coverage probability
is the observed percent of times the confidence interval
includes the parameter.

We performed two simulation studies. In the first
study, large simulated populations were generated from
three statistical distributions chosen to be representa-
tive of observed plant size distributions: normal, log-
normal, and bimodal (see Table 1). Normal random
numbers were generated by transforming uniform ran-
dom numbers from the VAX/VMS pseudo-random
number generator RAN with an approximate inverse
normal cumulative distribution function (Hastings
1955). The bimodal distribution was the sum of two
normal distributions with means of 6.0 and 10.0 and
variance of 1.0. Given those means, the probability of
generating a negative value was less than 1 in 100 000.
The size of each large population was arbitrarily set at
10 000.

The ““true” Gini coefficient was calculated from each
large population, then five hundred random samples
of size N were taken from the population; bootstrap
95% confidence intervals were calculated from each
sample as in Weiner (1985). In this study, we used
sample sizes (N) of 20, 50, 100, and 500. Computations
were done usinga VAX 11/750 computer at the Smith-
sonian Environmental Research Center.

In the second simulation study, samples of sizes 20,
100, and 250 were generated from uniform, truncated-
normal, and lognormal distributions. Since plant size
must be positive, the data generated from the normal
distribution were truncated by replacing any nonpos-
itive values. The true value of the Gini coeflicient can
be calculated analytically when the size data follow one
of these three statistical distributions (Appendix).
Computations for the one-sample bootstrap were done
on an IBM 3081D computer using IMSL (1982) ran-
dom number generators and VS FORTRAN programs.
Computations for the two-sample bootstrap were donc
in PASCAL on a microcomputer. A randomized shuf-
fler was used to improve the uniform distribution from
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RAN, the PASCAL pseudo-random number genera-
tor, and the Box-Miiller method was used to generate
normal deviates (Press et al. 1986).

In this study, bootstrap confidence intervals were
computed using the percentile method (Efron 1982),
the bias-corrected method (Efron 1982), an unequal-
tailed percentile method (personal communication from
J. Weiner in Zimmerman and Weis 1985), and the bias-
corrected (alpha) method (Efron and Tibshirani 1986).
The percentile method sets a 95% confidence interval
such that 2.5% of the bootstrap GG values are below the
lower bound and 2.5% arc above the upper bound. The
unequal-tailed method arbitrarily adjusts the confi-
dence interval so that 3% of the bootstrap values are
below the lower bound and 2% are above the upper
bound. The bias-corrected method and the bias-cor-
rected (alpha) method attempt to correct for biased and
narrow confidence intervals by using properties of the
bootstrap distribution.

The sample Gini coefficient (Weiner and Solbrig
1984) was calculated using the formula (Glasser 1962):

l ”
G=ce—— 2i —n— X,
2Xn(n — 1) 4 ( )
where X, are the sizes sorted from smallest to largest,
X, =X, =...X, When an efficient sort routine is
used, this formula is computationally faster than the
usual formula given in Weiner (1985).

Results and Discussion

The results of the two studies are similar. The boot-
strap confidence intervals (cI’s) are too narrow in al-
most all cases. In the first study, bootstrap cI’s are
unacceptably inaccurate for small samples (N < 50)
for all three distributions, and for all except the largest
sample size (N = 500) for the lognormal distribution
(Table 1). Bootstrapping performs adequately for larger
samples (N = 50) from the normal and bimodal pop-
ulations.

The second study confirms these results. The em-
pirical coverage of the bootstrap confidence interval
decreases at larger Gini values and depends on the
distribution of plant sizes (Table 1). For similar Gini
values, the coverage of the 95% ci is better for plant
sizes following uniform or truncated-normal distri-
butions than for plant sizes that follow the more skewed
lognormal distribution. The coverage of the 95% cr’s
from the other bootstrap methods is not substantially
different, and results for 90% and 99% cr’s are similar
to those for 95% cr’s. Using a bootstrap confidence
interval from a small sample to test a hypothesis would
misstate the type I error rate (alpha level); one would
reject a null hypothesis more often than one should.

The empirical coverage of the bootstrap confidence
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TaBLE 1. Estimated coverage probabilities (in percent) for
nominal 95% bootstrap confidence intervals.*

Single-sample confidence interval—study I

Popu-
lation ;
Distribution Gini Sample size (V)
of the data: value 20 50 100 500
Normal (6, 1) 0.11 86.0 92,6 924 954
Bimodal (scc Mcthods) 0.16  91.8 93.0 954 950
Lognormal (0, 1) 0.52 81.0 84.2 89.0 938

Single-sample confidence interval—study II

Popu-
lation :
Distribution Gini _Samplesize V)
of the data: value 20 100 250
Uniform (1, 1.86) 0.10 87.6
Lognormal (0, 0.21) 0.10 89.2
Uniform (1, 4.00) 0.20 924
Lognormal (0, 0.40) 0.20 89.7
Uniform (1, 19.0) 0.30 91.8 95.4 943
Lognormal (0, 0.54) 0.30 85.1 92.5 952
Trunc. normal (0, 1) 0.41 92,5 927 939
Lognormal (0, 1.0) 0.52 78.2 87.9
Lognormal (0, 1.5) 0.68 75.3
Lognormal (0, 2.0) 0.84 634

* Estimates in study I are based on 500 intervals. Estimates
in study II are based on 845 intervals (for N = 20 and N =
100) or 212 intervals (N = 250). Each interval was based on
500 bootstrap samples. The data distributions are explained
in the Methods and Appendix.

interval depends mainly on the number of observations
in the raw data, not on the number of bootstrap rep-
etitions. Because the results for 100, 500, and 1000
bootstrap repetitions are similar, only the data for 500
repetitions are presented. With small samples (20 in-
dividuals), bootstrap 95% c1’s include the parameter
63 to 92% of the time (Table 1). With 100 individuals,
95% cr’s include the parameter 88-95% of the time,
and they are relatively accurate when N = 250 plants
(Table 1). As the number of observations increases, the
frequency distribution of bootstrap values approaches
the frequency distribution of the original data (Nash
1981), so it is not surprising that bootstrap cr’s are
more accurate with larger data scts. What is noticcable
is their poor small-sample performance.

Comparison of the location of the upper and lower
bounds to the confidence intervals suggests why the
bootstrap confidence intervals are poorly behaved. The
true lower and upper bounds on G for a size distri-
bution can be estimated by Monte Carlo methods by
calculating G from many independent samples of data.
Generally, the lower bound of the bootstrap c1 was
close to the true lower bound, but the upper bound
was too low by as much as 0.10 units. Using an un-
cqual-tailed c1 (from the 3rd to the 98th percentiles,
instead of the 2.5th to 97.5th percentiles) brings the
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TaBLE 2. Estimated coverage probabilities (in percent) for
nominal 95% bootstrap confidence intervals for the differ-
ence between two populations.*

Gint value Gini value for population 2

for popula-
tion 1 0.10 0.20 0.52 0.84
0.10 93.9 91.5 77.8 60.3
0.20 95.2 84.9 61.8
0.52 93.4 86.9
0.84 94.8

* Estimates are based on 212 confidence intervals, 500
bootstrap samples for each interval, and a sample size of 20
from each population. All populations are lognormal.

upper bound closer to the true value, but the upper
bound is still too low.

The upper bound is too low partly because the sam-
ple estimator of ( is biased. The bias, the difference
between the true G for the population and the average
of many sample estimates of (, is largest when the
sample size is small and the size distribution is very
unequal (e.g., lognormal). This bias cannot be corrected
unless one can estimate the true distribution of plant
sizes, because the amount and direction of the bias
depend on the distribution. The estimated Gini value
is larger than the true value for uniformly distributed
plant sizes and smaller than the true value for normally
and lognormally distributed plant sizes. The “un-
biased’” sample estimator of the Gini coefficient used
by Weiner and Solbrig (1984) reduces but does not
eliminate the bias, although the bias is practically zero
when N > 100 or when G < 0.2,

A confidence interval around a sample Gini value
can be used to test a null hypothesis of the form: the
population G equals some constant. These confidence
intervals have been used (e.g., Weiner 1985, 1986) to
test if two populations are different by examining either
the overlap between two confidence intervals, or
whether each confidence interval includes the other
sample’s G value. The proper test of whether two pop-
ulations are similar is to see if a confidence interval
around the difference between two  values includes
0. Such a confidence interval can be derived by boot-
strapping. From the two samples of raw data, repeat-
edly draw a pair of bootstrap samples and calculate the
difference between their Gini coeflicients. The boot-
strap distribution of differences can be used to set the
bounds on a cI for the difference between the popu-
lation G values. These confidence intervals are quite
accurate if the two populations have similar Gini coef-
ficients, but are too narrow if the two samples are small
and have different Gini coefficients (Table 2). We ap-
plied this method to Weiner’s (1986) results on the
differences in inequality in Ipomoea tricolor popula-
tions grown in different competitive regimes. When the
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difference between two Gini coefficients is boot-
strapped with the method suggested here, the signifi-
cance level of his results increases, although the present
study indicates that his sample sizes are too small to
produce accurate single-sample bootstrap confidence
intervals.

We should not be surprised that bootstrapping yields
“overconfident” single-sample confidence intervals,
since the bootstrap samples, which are repeatedly drawn
from one sample of raw data, are treated as if they were
truly independent samples taken from some popula-
tion. Reasonably good confidence intervals can be ob-
1ained by bootstrapping when sample sizes are >100.
When the distribution includes a few very large indi-
viduals (lcading to large G’s), the bootstrap frequency
distribution is a poor approximation to the true, but
unknown, frequency distribution, and the confidence
intervals generated are unacceptably narrow unless the
sample size is very large.

These statistical considerations are not an argument
to abandon the use of the Gini coeflicient in favor of
other measures of size inequality. As always, param-
eters should be chosen to represent best the phenom-
enon of interest. Accurate confidence intervals for vari-
ance and skewness are also difficult to determine from
small samples (Schenker 1985). To sct a confidence
interval around a measure of size inequality accurately,
or at least conservatively, using the bootstrap requires
a larger experiment than often used.
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APPENDIX

Analytical expressions for the population Gini coefficient and parameterization of distributions.*

Distribution

Explanation

Population Gini coefficient

Truncated-normal (0, 1)

Generate a normal (0, 1) deviate,

40(0) + V2 -3 =V2 -1

reject if not larger than 0.

Lognormal (u. o)

Generate x, a normal (u, o) de-

28(6/\/2) — 1

viate, transform to exp(x)

Uniform (a, b)

= minimum value,

b —a)y3b + a

b = maximum value.

* ®(x) is the normal cumulative distribution function. Note that the population Gini coefficient for the lognormal distribution

depends only on the standard deviation.

August 1988

~ NOTES AND COMMENTS “%,

1307

i

ERRATA

In an article by Philip Dixon et al. (“Bootstrap-
ping the Gini coefficient of inequality,” Ecofogy
68(5):1548-1551) there was an error in the equation
on page 1549, The correct equation should be:

1

Ynln— 1=~

Y2i—a-1X,

The numerical results are correct,



