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DESCRIBING INEQUALITY IN PLANT SIZE OR FECUNDITY
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Abstract. Lorenz curves have been used to describe inequality in plant size and fe-
cundity, where the total inequality is summarized by the Gini coefficient. Here we propose
a second and complementary statistic, the Lorenz asymmetry coefficient, which charac-
terizes an important aspect of the shape of a Lorenz curve. The statistic tells us which size
classes contribute most to the population’s total inequality. This may be useful when in-
terpreting the ecological significance of plant size or reproductive inequality.
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INTRODUCTION

Variation in plant size and fecundity has traditionally
been described and analyzed using the statistical mo-
ments of the size distribution, or statistics derived from
the moments such as standard deviation and skewness.
In recent years, the focus has shifted toward an em-
phasis on inequality in size and fecundity, after it was
argued that ‘‘size variability’’ or ‘‘size hierarchy,’’ as
the terms are used by ecologists, are often synonymous
with the concept of size inequality or concentration
(Weiner and Solbrig 1984). Similarly, inequality in fe-
cundity reflects the degree of increase in the represen-
tation of the genes of the more fecund individuals in
the next generation (e.g., Heywood 1986). Several mea-
sures of inequality from economics literature (Sen
1973) have been used to analyze variation in size and
fecundity within plant populations. One approach to
inequality that has been applied to plant populations is
the Lorenz curve (Lorenz 1905, Gini 1912, Sen 1973,
Dagum 1980, Weiner and Solbrig 1984).

In the Lorenz curve, individuals are ranked by size
(or fecundity; we refer below only to size), and the
cumulative proportion of plants (x-axis) is plotted
against the corresponding cumulative proportion of
their total size on the y-axis (Fig. 1). If we have a
sample of n ordered plants, such that is the size ofx9i
plant i, and , then the sample Lorenzx9#x9#. . . #x91 2 n

curve is the polygon joining the points (h/n, Lh/Ln),
where h 5 0, 1, . . . , n, L0 5 0, and (KotzhL 5 S x9h i 5 1 i

et al. 1983). Alternatively, the Lorenz curve can be
expressed as follows:

Manuscript received 17 November 1998; revised 23 March
1999; accepted 12 April 1999; final version received 12 May
1999.

y

L(y) 5 x dF(x)/m (1)E
0

where F( y) is the cumulative distribution function of
ordered plants, and m is the average plant size (Dagum
1980, Kotz et al. 1983).

If all individuals are the same size, the Lorenz curve
is a straight diagonal line, called the line of equality
(Fig. 1). If there is any inequality in size, then the
Lorenz curve is below the line of equality. The total
amount of inequality can be summarized by the Gini
coefficient (or Gini ratio), which is the ratio between
the area enclosed by the line of equality and the Lorenz
curve, and the total triangular area under the line of
equality (Fig. 1). The Gini coefficient is most easily
calculated from unordered plant size data as the ‘‘rel-
ative mean difference,’’ i.e., the mean of the difference
between every possible pair of individuals, divided by
the mean size (Sen 1973):

n n

zx 2 x zO O i j
i51 j51

G 5 . (2)
22n m

Alternatively, if the data is ordered by increasing plant
size (Dixon et al. 1987),

n

(2i 2 n 2 1)x9O i
i51G 5 . (3)

2n m

The Gini coefficient ranges from a minimum value
of zero, when all individuals are equal, to a theoretical
maximum of one in an infinite population in which
every individual except one has a size of zero. It has
been shown that sample Gini coefficients calculated by
Eq. 2 or 3 should be multiplied with n/(n 2 1) to be-
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FIG. 1. Three Lorenz curves: a symmetric case (bold line),
and two asymmetric cases (a and b).

FIG. 2. Two simple populations with the same mean (10),
Gini coefficient (0.444), and sample size (10), but with dif-
ferent Lorenz asymmetry coefficients: (a) 1.46; (b) 0.74.

FIG. 3. Lorenz curves for the example populations in
Fig. 2.

come unbiased estimates (Glasser 1962). The Gini co-
efficient has been used as a measure of inequality in
size and fecundity in plant populations in numerous
studies (e.g., Weiner 1985, Geber 1989, Knox et al.
1989, Preston 1998).

Like any summary statistic, the Gini coefficient does
not contain all the information in the Lorenz curve,
and it has been pointed out that different Lorenz curves
can have the same Gini coefficient (Weiner and Solbrig
1984, Shumway and Koide 1995). In case a of Fig. 1,
most of the inequality within the population is due to
the very few largest individuals, which contain a very
large percentage of the population’s biomass. In case
b, the same overall degree of inequality is due primarily
to the relatively large number of very small individuals,
which are contributing very little to the population’s
total biomass. A simplified version of this can be dem-
onstrated by example populations consisting of only
two sizes. Populations a and b in Fig. 2 have the same
mean (10), the same Gini coefficient (0.444), but dif-
ferent Lorenz curves (Fig. 3). This difference can be
quantified by measuring the asymmetry of the Lorenz
curve around the other diagonal (axis of symmetry in
Fig. 1), specifically the location of the point at which
the Lorenz curve has a slope equal to 1, the same slope
as the line of equality (Fig. 1; Kotz et al. 1983, Shum-
way and Koide 1995). This asymmetry of the Lorenz
curve has previously been quantified by Shumway and
Koide (1995) to look at the effects of mycorrhizae on
plant population structure. They fitted a sample Lorenz
curve with a polynomial equation and estimated the
point on the Lorenz curve where it was parallel to the
line of equality by differentiating the fitted equation.
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TABLE 1. Analysis of variance of Lorenz asymmetry coef-
ficient (S) on plant density (high vs. low) and mycorrhizae
(present vs. absent) for capsule production by Abutilon
theophrasti (data from Shumway and Koide [1995]).

Source SS df F P

Density
Mycorrhizae
Residual
Total

0.0287
0.0826
0.2166
0.3280

1
1

17
19

2.26
6.48

0.15
0.02

Here we propose an improved method to quantify the
asymmetry in which the data are used directly.

RESULTS

We define the Lorenz asymmetry coefficient as S 5
F( ) 1 L( ), where the functions F and L are as inm̂ m̂
Eq. 1 (Kotz et al. 1983). To interpret the graphical
meaning of the statistic we note that the continuous
Lorenz curve as defined by Eq. 1 only is parallel with
the line of equality in the point (F(m), L(m)) (Dagum
1980). Then a Lorenz curve is called symmetric if the
curve is parallel with the line of equality at the axis of
symmetry, and since the axis of symmetry can be ex-
pressed by F( y) 1 L( y) 5 1, we have that a Lorenz
curve is symmetric if and only if S 5 F( ) 1 L( ) 5m̂ m̂
1 (Kotz et al. 1983). If S . 1, then the point where the
Lorenz curve is parallel with the line of equality is
above the axis of symmetry. Correspondingly, if S ,
1, then the point where the Lorenz curve is parallel
with the line of equality is below the axis of symmetry.

Since the sample Lorenz curve is a polygon, we can
calculate the sample statistic S from the ordered plant
size data using the following equations:

m̂ 2 x9md 5 (4)
x9 2 x9m11 m

m 1 d
F(m̂) 5 (5)

n

L 1 dx9m m11L(m̂) 5 (6)
Ln

where m is the number of plants with a plant size less
than m. (If one or more of the data points are equal to

, see Appendix A.) For the two example data sets am̂
and b in Fig. 3, S 5 1.46 and S 5 0.74, respectively.
Note, that distribution b has an asymmetric Lorenz
curve (S , 1) although the distribution itself is not
skewed.

As a more concrete example of its usefulness, we
calculated S for data from Shumway and Koide (1995)
on the effect of mycorrhizae and plant density on the
number of capsules produced by Abutilon theophrasti
individuals. Shumway and Koide found that mycor-
rhizae increased inequality in the number of capsules

produced. When S was calculated for the Lorenz curves
describing inequality in capsule number, we found that
plants without mycorrhizae had significantly more
asymmetric Lorenz curves (high plant density, S with
mycorrhizae 5 0.89, S without mycorrhizae 5 0.71;
low plant density, S with mycorrhizae 5 0.92, S without
mycorrhizae 5 0.84; Table 1). Thus, the increase in
reproductive inequality when mycorrhizae were present
was primarily due to an increase in the contribution of
plants with highest capsule production.

Confidence intervals for the estimates of S for a sam-
ple can be obtained with the bootstrapping procedure,
as has previously been demonstrated for the Gini co-
efficient (Dixon et al. 1987). A Mathematica notebook
(Wolfram 1996), which draws the sample Lorenz
curves and calculates the estimates of G and S as well
as the bootstrap confidence intervals from input data,
is available on the Internet.3

Since the differences between Lorenz curves with
different values of S may also be reflected in the skew-
ness of the size distribution, we compared the behavior
of S with the behavior of the standard measure of skew-
ness , where in two3/2 n i(m /m m 5 1/n S (x 2 m) )3 2 i j 5 1 j

often used positively skewed distributions, the gamma
distribution and the lognormal distribution (see Ap-
pendix B).

DISCUSSION

The Lorenz curve expresses a concept of inequality.
This concept is fundamentally different from, and
therefore represents an alternative to, the concept of
variation expressed using distribution moments. If the
Lorenz curve framework is appropriate for analysis of
variation in a population, then the Lorenz asymmetry
coefficient may be useful in describing the population’s
inequality.

In some cases, it will not matter which framework
one uses for looking at inequality. For example, all
measures of inequality, such as the Gini coefficient, the
coefficient of variation, Theil’s measure of entropy (van
Andel et al. 1984), or the standard deviation of the log-
transformed distribution, will tend to be correlated. If
one is just asking if a specific factor or treatment will
increase or decrease inequality, then the interpretation
of the data will probably not be affected by which
framework the researcher takes. But as we obtain more
data, both empirical data and artificial data from sim-
ulation models, it may be useful to look not only at
the overall degree of inequality within a population,
but also at how this inequality is distributed. In this
context, the statistic S may be useful in analyzing and
interpreting inequality in plant size and/or reproductive
output.

3 URL: http://www.dmu.dk/TerrestrialEcology/index.htm



1142 NOTES Ecology, Vol. 81, No. 4

The Lorenz asymmetry coefficient in the Lorenz
curve model of inequality is in some ways analogous
to skewness in the traditional distribution-moment
analysis. While skewness has been used as a measure
of the size hierarchy within a population, Weiner and
Solbrig (1984) argued that this was inappropriate be-
cause a distribution can be highly skewed while having
very little variation and, similarly, a distribution can
contain huge variation while being non- or even neg-
atively skewed. The biological interpretation of skew-
ness of a size or fecundity distribution is problematic,
although the use of skewness does have its defenders
(Bendel et al. 1989). We suggest that the Lorenz asym-
metry coefficient is much easier to interpret biologi-
cally in the context of the Lorenz curve, which itself
has a clear biological interpretation.
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APPENDIX A
Eqs. 4–6 assume that none of the plant sizes are equal to

m; strictly speaking we assume that plant size are continuously
distributed, so that P(xi 5 m) ø 0. Otherwise, if one or more
of xi 5 , then a section of the Lorenz curve is parallel tom̂
the diagonal, and S has to be defined as an interval instead
of a number. The interval can be defined as follows:

m L m 1 a Lm m1a1 , 1 (A.1)[ ]n L n Ln n

where a is the number of data values that are equal to .m̂

APPENDIX B
For two commonly used positively skewed distributions,

the gamma distribution and the lognormal distribution, the
relationship between F and L in Eq. 1 is particularly simple
(Dagum 1980). If a sample of plant sizes can be assumed to
come from a gamma distribution with two parameters, so that
the cumulative plant distribution is

y ab
a21 2bxF(y) 5 G(y; a, b) 5 x e dx (B.1)E G(a)0

(a . 0; b . 0), then the Lorenz curve (F( y), L( y)) 5 (G( y;
a, b), G( y; a 1 1, b) (Dagum 1980). For gamma-distributed
plant sizes,

` `

a21 2t a21 2tt e dt 2 t e dtE E
0 a

S 5 F(m) 1 L(m) 5
G(a)

` `

a 2t a 2tt e dt 2 t e dtE E
0 a

1 . (B.2)
G(1 1 a)

Thus, S is independent of b. This is comparable to the skew-
ness of the gamma distribution (5 2/ ), which also is inde-Ïa
pendent of the parameter b.

Second, if a sample of plant sizes can be assumed to come
from a lognormal distribution, so that the cumulative plant
distribution is

F(y) 5 LN(y; a, s)
y 1

2 25 exp{2[log(x)2a] /2s } dx (B.3)E Ï2psx0

(s . 0), then the Lorenz curve (F( y), L( y)) 5 (LN( y; a, s),
LN( y; a 1 s2, s) (Dagum 1980). Interestingly, for lognormal
distributed plant sizes S 5 F(m) 1 L(m) 5 1. Thus, the Lorenz
curve is always symmetric when the data are lognormal dis-
tributed. This should be compared to the skewness of the
lognormal distribution (5 (2 1 e )), which also22 ssÏ21 1 e
is independent of a, but depends on the parameter s. The
observation that S 5 1 for lognormal distributed data, may
be used as a basis for deciding whether a lognormal distri-
bution is appropriate.


